# via yoyo@home
n=1560: c358(3357526645......) = 108656831497374119645419435740256864429622885281 * c311(3090028118......)
# ECM B1=850000000, sigma=0:10063420144641816549
n=184609: c184599(1348643601......) = 1564472097304599397 * c184580(8620438830......)
n=184949: c184927(1103826707......) = 500904644096733043 * c184909(2203666347......)
n=185123: c185116(1200402965......) = 2753652950916504569 * c185097(4359311020......)
n=185693: c185669(6012678916......) = 116741019534893947 * c185652(5150442355......)
n=185917: c185878(3007864765......) = 4032985847120245637 * c185859(7458158494......)
n=186049: c186042(1493035385......) = 9112517660974895689 * c186023(1638444435......)
n=186107: c186078(1297428668......) = 12032824278053703493 * c186059(1078241183......)
n=186157: c186131(5967490525......) = 724145948258859173 * c186113(8240729013......)
n=186259: c186236(6081016665......) = 8546221013473025879 * c186217(7115445125......)
n=186311: c186245(1354258315......) = 5628327329717383721 * c186226(2406147041......)
n=186397: c186362(2873312279......) = 97801727586278711 * c186345(2937895219......)
n=186727: c186704(1656982926......) = 1136507338051068079 * c186686(1457960605......)
n=187009: c186994(1343552349......) = 418585147319799557 * c186976(3209746830......)
n=187339: c187312(9439303334......) = 475551793310626009 * c187295(1984915937......)
n=187751: c187738(1754080885......) = 2646632528936098519 * c187719(6627595129......)
n=187843: c187832(4876667622......) = 14013106034834054039 * c187813(3480076159......)
# gr-mfaktc
n=4204: c2062(4073751908......) = 23504220050916161862710973899137963881141682981 * c2016(1733200208......)
# ECM B1=11e6, sigma=3:1894358640
n=6408: c2063(6328266687......) = 14997617217656471604746186682930049930633 * c2023(4219514737......)
# ECM B1=1e6, sigma=3:4066264674
n=177839: c177818(1678623216......) = 113885452173361117 * c177801(1473957546......)
n=178021: c177993(8776680950......) = 14718947824410878161 * c177974(5962845343......)
n=178469: c178460(5053403659......) = 152206769695623787 * c178443(3320091261......)
n=178597: c178581(1306021577......) = 643303026215302283 * c178563(2030180995......)
n=178609: c178582(9046273329......) = 12558017060740140799 * c178563(7203584201......)
n=178939: c178932(6209437239......) = 3044120539618954613 * c178914(2039813193......)
n=179821: c179795(4634228046......) = 590250428757377719 * c179777(7851291283......)
n=179951: c179938(4797410291......) = 2813000519478283361 * c179920(1705442376......)
n=180371: c180339(2496037990......) = 161626810241788147 * c180322(1544321753......)
n=180617: c180596(5835635575......) = 5239347822233689067 * c180578(1113809537......)
n=181213: c181207(1532877854......) = 834862619794964707 * c181189(1836083946......)
n=181739: c181730(8491352240......) = 5232222002150994107 * c181712(1622896015......)
n=182057: c182047(4864574122......) = 3344826495484909493 * c182029(1454357686......)
n=182101: c182082(1055198509......) = 8851400396921359187 * c182063(1192126061......)
n=182341: c182325(1718714642......) = 4269834677233741079 * c182306(4025248686......)
n=182641: c182621(8065176078......) = 723150300239755877 * c182604(1115283513......)
n=182657: c182640(1003757640......) = 3564588172409810311 * c182621(2815914749......)
n=182713: c182696(4622180497......) = 17925320102905125329 * c182677(2578576265......)
n=182813: c182784(6210370754......) = 13123792712239226471 * c182765(4732146332......)
n=183871: c183850(5821662270......) = 2646547807898106347 * c183832(2199719292......)
n=183907: c183899(7949606048......) = 3068550671018567711 * c183881(2590671264......)
n=184487: c184481(1003783561......) = 1370318807038509677 * c184462(7325182696......)
n=184511: c184478(1475346330......) = 176972596136022719 * c184460(8336580704......)
n=184523: c184511(2420593687......) = 902597213038449121 * c184493(2681809397......)
# gr-mfaktc
# via Kurt Beschorner
n=3280: c1281(1000000009......) = 1911252988713565481467511930631361 * c1247(5232169764......)
# ECM B1/B2=5e5/5e9, sigma=0:14869155166291194864
n=4197: c2763(1641725552......) = 186020642299970673243193105523869919839 * c2724(8825502011......)
# ECM B1/B2=5e5/5e9, sigma=0:3679422559654884866
n=4368: c1140(1070815389......) = 237754388415902495275482610318383240001 * c1101(4503872237......)
# ECM B1/B2=5e5/5e9, sigma=0:6790301644567458983
n=4440: c1117(1512767593......) = 29992347542578666403413713176798066161 * c1079(5043845237......)
# ECM B1/B2=5e5/5e9, sigma=0:10703124058579170610
n=4698: c1505(6475707968......) = 857112878757369149900856846983631918223 * c1466(7555256872......)
# ECM B1/B2=5e5/5e9, sigma=0:6725872645354457307
n=5160: c1290(3205928816......) = 18153208857510222275917029175950001 * c1256(1766039735......)
# ECM B1/B2=5e5/5e9, sigma=0:9344462103149422725
n=5798: c2654(4433454419......) = 729020901308483889226374187702561 * c2621(6081381770......)
# ECM B1/B2=5e5/5e9, sigma=0:2831118203243718097
n=6006: c1348(7436027400......) = 1646834339105310464972479528858436491 * c1312(4515346336......)
# ECM B1/B2=5e5/5e9, sigma=0:13060330855148394131
n=6393: c4199(3331868052......) = 1004383546315503999784081217023681 * c4166(3317326398......)
# ECM B1/B2=5e5/5e9, sigma=0:7017837466796483784
n=6630: c1517(2111584418......) = 21717867918556775397701006854682095582651 * c1476(9722797959......)
# ECM B1/B2=5e5/5e9, sigma=0:8681758383759537919
n=6952: c3092(8882409429......) = 266560402280626584335130714476824810081 * c3054(3332231401......)
# ECM B1/B2=5e5/5e9, sigma=0:10408360530165252536
n=7134: c2219(1345654937......) = 2345944430938521441265773138681703 * c2185(5736090418......)
# ECM B1/B2=5e5/5e9, sigma=0:6089803275547679665
n=7744: c3512(1434977955......) = 298657917027363699143682270414851319617 * c3473(4804754448......)
# ECM B1/B2=5e5/5e9, sigma=0:9718061344605056692
n=7852: c3566(7670574208......) = 1200500573989685291134651711870822309201 * c3527(6389479834......)
# ECM B1/B2=5e5/5e9, sigma=0:15817273137027888195
n=8752: c4327(7646803930......) = 75285275278784265466362543673199046209 * c4290(1015710429......)
# ECM B1/B2=5e5/5e9, sigma=0:2081434458332117129
n=10224: c3345(2324061596......) = 441711904555683022704848759749249 * c3312(5261487346......)
# ECM B1/B2=5e5/5e9, sigma=0:12299192684716804712
n=10598: c4530(2075862771......) = 3597922230838275107961604112166557 * c4496(5769615455......)
# ECM B1/B2=5e5/5e9, sigma=0:742802670757413020
n=10884: c3593(2907286634......) = 240052142002189932809080512172069 * c3561(1211106307......)
# ECM B1/B2=5e5/5e9, sigma=0:6432573676018707663
n=12744: c4177(1000000000......) = 2861264146060473813761789402641 * c4146(3494958692......)
# ECM B1/B2=5e5/5e9, sigma=0:14082982417874106156
n=12972: c4000(2908292846......) = 62706334422191443200648762090327781 * c3965(4637957031......)
# ECM B1/B2=5e5/5e9, sigma=0:1528717617120756122
n=13308: c4433(1009998990......) = 44299456880878064723974395106489 * c4401(2279935378......)
# ECM B1/B2=5e5/5e9, sigma=0:11041586529670737843
n=14208: c4590(3164895913......) = 1524771540331195381763459008075393 * c4557(2075652535......)
# ECM B1/B2=5e5/5e9, sigma=0:2035422395833494726
n=14694: c4614(5433906501......) = 1056204819917533482340750452584677 * c4581(5144746927......)
# ECM B1/B2=5e5/5e9, sigma=0:17497247928878312838
n=15378: c4600(2434465026......) = 2886748943617739444060148620598571801 * c4563(8433241248......)
# ECM B1/B2=5e5/5e9, sigma=0:13956240258883961480
n=16014: c4932(6888841006......) = 242908551381089331505792728157369 * c4900(2835981264......)
# ECM B1/B2=5e5/5e9, sigma=0:14403339319743946042
n=20140L: c3692(5233150285......) = 143345143759904598933230571447539621 * c3657(3650734268......)
# ECM B1/B2=5e5/5e9, sigma=0:6034086090293666680
n=27900M: c3539(6238365710......) = 2032503049742367293008194117618901 * c3506(3069302017......)
# ECM B1/B2=5e5/5e9, sigma=0:28749172868305296
n=28860L: c3414(1039047832......) = 1106363195614463302722409012483092901 * c3377(9391561804......)
# ECM B1/B2=5e5/5e9, sigma=0:8001343898439981042
n=32460M: c4253(2130298866......) = 44908811495485130347225966983421 * c4221(4743609985......)
# ECM B1/B2=5e5/5e9, sigma=0:8415941039710008822
n=32580M: c4294(2224015332......) = 123455996059303344865864899953967121 * c4259(1801464006......)
# ECM B1/B2=5e5/5e9, sigma=0:2065832344816608518
n=35220M: c4664(2022491022......) = 7677213175504365363125808691655641 * c4630(2634407793......)
# ECM B1/B2=5e5/5e9, sigma=0:8768250651617111724
n=36540M: c4021(3108810158......) = 95295257202978150042834073094761 * c3989(3262292636......)
# ECM B1/B2=5e5/5e9, sigma=0:13255250198072713356
# via Kurt Beschorner
n=29387: c29387(1111111111......) = 283026108577015925490588767507677 * c29354(3925825489......)
# ECM B1=1e6, sigma=1645769116596359
n=50441: c50441(1111111111......) = 3003303332793295446604408033747 * x50410(3699630000......)
# ECM B1=1e6
n=50441: x50410(3699630000......) = 29068953242235993473605584803432399 * c50376(1272708366......)
# ECM B1=1e6
# 217078 of 300000 Φn(10) factorizations were cracked. 300000 個中 217078 個の Φn(10) の素因数が見つかりました。
# 20108 of 25997 Rprime factorizations were cracked. 25997 個中 20108 個の Rprime の素因数が見つかりました。
n=1677: c989(1288422676......) = 3329328271060519212301311861135286599848131427868613 * c937(3869917808......)
# ECM B1=11e6, sigma=3:722961159
n=7039: c7039(1111111111......) = 7061891984345339432400084989612293 * c7005(1573390124......)
# ECM B1=1e6, sigma=0:3470511025661750
n=174019: c173983(6395886750......) = 642473660430743573 * c173965(9955095662......)
n=174599: c174593(3181885146......) = 287440556512301483 * x174576(1106971536......)
n=174599: x174576(1106971536......) = 595241352743125631 * c174558(1859702004......)
n=174617: c174604(3756377691......) = 750851192807631919 * c174586(5002825763......)
n=175481: c175475(3165892447......) = 9232764159647605991 * c175456(3428975757......)
n=175493: c175482(2986016381......) = 119494346887610203 * c175465(2498876691......)
n=175519: c175496(1700347507......) = 229518562061427707 * x175478(7408322415......)
n=175519: x175478(7408322415......) = 1474570169908051427 * c175460(5024055529......)
n=176041: c176029(1739627542......) = 523016264160476627 * c176011(3326144256......)
n=176129: c176110(8214240529......) = 17437340604163989133 * c176091(4710718633......)
n=176353: c176332(2033780207......) = 1355686515829697209 * c176314(1500184728......)
n=176369: c176305(2977240599......) = 72453751077374671 * x176288(4109160057......)
n=176369: x176288(4109160057......) = 4911696122605228111 * c176269(8366071424......)
n=176467: c176451(2934579226......) = 2300767223861150173 * c176433(1275478542......)
n=176807: c176797(5779213069......) = 591608020926242363 * c176779(9768652325......)
n=176809: c176785(2326013054......) = 8278329203428490267 * c176766(2809761483......)
n=176989: c176956(1043049384......) = 15297192370190394173 * c176936(6818567482......)
n=177109: c177085(2283598301......) = 188486014050640679 * c177068(1211547876......)
# gr-mfaktc
# yoyo@home
n=695: c502(7351683669......) = 354710359182835645091947493448582656163487512993191 * c452(2072587811......)
# ECM B1=260000000, sigma=0:1319347618569068982
n=2113: c2036(4599957306......) = 9868727707474225190433227603022143094071 * c1996(4661145228......)
# ECM B1=6e6, sigma=3:916854935
n=2845: c2272(9000090000......) = 43691022461204700191127333067593287157085788271 * c2226(2059940347......)
# ECM B1=6e6, sigma=3:1063586942
n=3147: c2030(3705378484......) = 492789943824235127402251719514552601706889 * c1988(7519184452......)
# ECM B1=6e6, sigma=3:1534536896
n=4346: c2036(1133162460......) = 10976658180306132602586192309231747331 * c1999(1032338295......)
# ECM B1=6e6, sigma=3:2177076240
n=4796: c2061(5561268095......) = 442092471033849713445041776370929 * c2029(1257942276......)
# ECM B1=1e6, sigma=0:5652839186178661
n=5240: c2070(7654381128......) = 7742288941873129751018070735072052321 * c2033(9886457592......)
# ECM B1=6e6, sigma=3:786066703
n=6114: c2025(9500631326......) = 198167541895216911236313484358405550019 * c1987(4794241900......)
# ECM B1=6e6, sigma=3:975157608
n=8346: c2544(9100000000......) = 4918214590818276306261184580500610912731 * c2505(1850264934......)
# ECM B1=1e6, sigma=0:4884842358437486
n=10320: c2558(3087364605......) = 44139393752387724266425265434187730938401 * c2517(6994578636......)
# ECM B1=1e6, sigma=4307441870226858
n=14833: c11631(4597800509......) = 174987712398772322425125967245757 * c11599(2627499066......)
# P-1 B1=180e6
n=14867: c14836(3872709148......) = 20630936043931768953088771511 * c14808(1877136907......)
# P-1 B1=140e6
n=174571: c174549(3059193721......) = 719782526256611827 * c174531(4250163916......)
# gr-mfaktc
# via Kurt Beschorner
n=3664: c1782(3981310444......) = 4164714419157402444844822255199969 * c1748(9559624126......)
# ECM B1/B2=25e4/2e9, sigma=0:13398727728314193893
n=3824: c1904(9999999900......) = 20080215531784749060494753631184817 * c1870(4980026177......)
# ECM B1/B2=25e4/2e9, sigma=0:15524317562495335121
n=5160: c1323(3114031355......) = 971335152411412054285657500337681 * c1290(3205928816......)
# ECM B1/B2=25e4/2e9, sigma=0:17615833290720315451
n=5229: c2953(1001000999......) = 263410252804238810945131362244540321 * c2917(3800159596......)
# ECM B1/B2=5e5/5e9, sigma=0:2781020228500431269
n=5328: c1688(3495537178......) = 30937595264132292290263244192312113 * c1654(1129867124......)
# ECM B1/B2=25e4/2e9, sigma=0:15358478768839574859
n=5466: c1803(5394355460......) = 829364742840318197127742810933213 * c1770(6504201567......)
# ECM B1/B2=5e5/5e9, sigma=0:17044271037978502408
n=5632: c2547(6616235789......) = 128114683285829580435544479616160257 * p2512(5164307181......)
# ECM B1/B2=5e5/5e9, sigma=0:13588818615970341861
$ ./pfgw64 -tc -q"(10^2816+1)/1936368161124537693468841755508132766776484123137/(10^256+1)" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing (10^2816+1)/1936368161124537693468841755508132766776484123137/(10^256+1) [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 5 Running N+1 test using discriminant 13, base 8+sqrt(13) Calling N-1 BLS with factored part 0.31% and helper 0.01% (0.97% proof) (10^2816+1)/1936368161124537693468841755508132766776484123137/(10^256+1) is Fermat and Lucas PRP! (0.2701s+0.0004s)
n=5636: c2812(3513356551......) = 434029998306367693883437848044884501 * c2776(8094732082......)
# ECM B1/B2=5e5/5e9, sigma=0:3750594520344197584
n=6142: c2881(1835152900......) = 189700591156683401362582229406465875023 * c2842(9673944023......)
# ECM B1/B2=25e4/2e9, sigma=0:17024215258572921906
n=6214: c2834(2287301996......) = 40018819959119828629101637877858001931 * c2796(5715565823......)
# ECM B1/B2=5e5/5e9, sigma=0:8495023645294212007
n=6514: c3239(2803424996......) = 1123029922900976900506767796756332259 * p3203(2496304808......)
# ECM B1/B2=5e5/5e9, sigma=0:12809318115775978721
$ ./pfgw64 -tc -q"(10^3257+1)/4005921057937342573597419119106282905487586401861819437" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing (10^3257+1)/4005921057937342573597419119106282905487586401861819437 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Running N+1 test using discriminant 5, base 5+sqrt(5) Calling N-1 BLS with factored part 0.27% and helper 0.03% (0.86% proof) (10^3257+1)/4005921057937342573597419119106282905487586401861819437 is Fermat and Lucas PRP! (0.3565s+0.0004s)
n=6657: c3737(9065121808......) = 145951882418077867784201734400041 * c3705(6211034526......)
# ECM B1/B2=25e4/2e9, sigma=0:18133739158532652959
n=6837: c4348(4373670301......) = 136547241882462117208570838828484958321 * c4310(3203045511......)
# ECM B1/B2=5e5/5e9, sigma=0:2054052011747806284
n=6898: c3438(9228419543......) = 339770302820839587232904066020868699 * c3403(2716075968......)
# ECM B1/B2=25e4/2e9, sigma=0:15712921534708627633
n=7216: c3179(7391583299......) = 243940897605850578662716956393153615857 * c3141(3030071370......)
# ECM B1/B2=5e5/5e9, sigma=0:1262419166638870824
n=7227: c4270(9219432239......) = 2166966177751267153268166937381231 * c4237(4254534442......)
# ECM B1/B2=5e5/5e9, sigma=0:13436205466548073151
n=7815: c4135(3757354822......) = 98609409618977756494786923171804841 * c4100(3810341058......)
# ECM B1/B2=5e5/5e9, sigma=0:7060735454671973709
n=8134: c3388(1341457011......) = 12583199531281865514589378055767773973 * c3351(1066069888......)
# ECM B1/B2=5e5/5e9, sigma=0:1838478488097777976
n=8560: c3344(3705757550......) = 12989441774450892468576116421281 * c3313(2852899773......)
# ECM B1/B2=5e5/5e9, sigma=0:14177894179801236514
n=8566: c4270(3963092405......) = 43315395897541310040269846068986289 * c4235(9149385162......)
# ECM B1/B2=5e5/5e9, sigma=0:17853113655865425123
n=8640: c2305(1000000000......) = 1774578507741330044200830311414401 * c2271(5635140939......)
# ECM B1/B2=25e4/2e9, sigma=0:16777794245218843065
n=10070: c3723(5502847028......) = 18403338640757862885236191706681 * c3692(2990135179......)
# ECM B1/B2=25e4/2e9, sigma=0:279181489460827925
n=10590: c2768(2173839497......) = 561245507735356368179812371030481 * c2735(3873241687......)
# ECM B1/B2=25e4/2e9, sigma=0:155986972714609620
n=11802: c3322(8622681680......) = 19153169949321334581871827302961823 * c3288(4501960617......)
# ECM B1/B2=5e5/5e9, sigma=0:754412429498822119
n=13038: c4155(6345044938......) = 370601982642184973495143825327 * c4126(1712091471......)
# ECM B1/B2=5e5/5e9, sigma=0:998944672843560811
n=14520: c3459(9397196962......) = 1274573145041411401367191497579763441 * c3423(7372818891......)
# ECM B1/B2=5e5/5e9, sigma=0:400555583078540451
n=15054: c4553(1198514760......) = 116292129637897326511604400996380983 * c4518(1030606941......)
# ECM B1/B2=5e5/5e9, sigma=0:5355646991077107570
n=15906: c4747(2907308035......) = 2912263855611892572006388501891 * c4716(9982982928......)
# ECM B1/B2=5e5/5e9, sigma=0:13726245492964466491
n=16620L: c2208(3913542626......) = 720013543821333125389551466554851401 * p2172(5435373626......)
# ECM B1/B2=5e5/5e9, sigma=0:3389977353897334427
$ ./pfgw64 -tc -q"((10^831+1)*((10^1662+10^831)*(10^831-10^416+3)-10^416+2)-1)/183979992677330295166922469195988098898518361/((10^277+1)*((10^554+10^277)*(10^277-10^139+3)-10^139+2)-1)" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing ((10^831+1)*((10^1662+10^831)*(10^831-10^416+3)-10^416+2)-1)/183979992677330295166922469195988098898518361/((10^277+1)*((10^554+10^277)*(10^277-10^139+3)-10^139+2)-1) [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 7 Running N-1 test using base 11 Running N+1 test using discriminant 17, base 2+sqrt(17) Calling N-1 BLS with factored part 0.87% and helper 0.35% (2.97% proof) ((10^831+1)*((10^1662+10^831)*(10^831-10^416+3)-10^416+2)-1)/183979992677330295166922469195988098898518361/((10^277+1)*((10^554+10^277)*(10^277-10^139+3)-10^139+2)-1) is Fermat and Lucas PRP! (0.2310s+0.0006s)
n=16674: c4709(5870631128......) = 4931152927626020123165836550524997143 * c4673(1190518974......)
# ECM B1/B2=5e5/5e9, sigma=0:15453319363387653357
n=17180M: c3404(7346995262......) = 20492229865015455019983513725900861 * c3370(3585259052......)
# ECM B1/B2=5e5/5e9, sigma=0:14091406114746782399
n=18480: c3841(1000000009......) = 117822234184877432549994670876502831777281 * c3799(8487362482......)
# ECM B1/B2=5e5/5e9, sigma=0:14129915863680795195
n=20220L: c2638(1725962923......) = 242507968752086586727067398776416641 * c2602(7117139004......)
# ECM B1/B2=5e5/5e9, sigma=0:998869804729976522
n=21100L: c4120(1001437771......) = 1980513196186417220526979797825401 * c4086(5056455941......)
# ECM B1/B2=5e5/5e9, sigma=0:328880225664388988
n=22580L: c4478(2275142067......) = 88737598847389771207191540516234581 * c4443(2563898615......)
# ECM B1/B2=5e5/5e9, sigma=0:15720404829595395566
n=23260M: c4642(1191921723......) = 11275479288231545368071413900081 * c4611(1057091847......)
# ECM B1/B2=5e5/5e9, sigma=0:2508353708636782446
n=24100M: c4759(8006383211......) = 30027560147612242503449179022761201 * c4725(2666344908......)
# ECM B1/B2=5e5/5e9, sigma=0:12093293354679703196
n=27300M: c2859(1155417044......) = 3848452244797753202545781691301 * c2828(3002290195......)
# ECM B1/B2=25e4/2e9, sigma=0:17137634119583494242
n=28980M: c3158(3943506421......) = 540164968883931252419681601277801 * c3125(7300559364......)
# ECM B1/B2=25e4/2e9, sigma=0:11201387509885716591
n=30180L: c3999(3738057402......) = 2793703254978175669057061519211121 * c3966(1338029511......)
# ECM B1/B2=25e4/2e9, sigma=0:10890091970649774733
n=30780M: c3883(4641211170......) = 3829302821833287074920745507131542001 * c3847(1212025109......)
# ECM B1/B2=5e5/5e9, sigma=0:14498720421469503776
n=31860L: c4170(4685140851......) = 159351071831812647092238862150621 * c4138(2940137645......)
# ECM B1/B2=5e5/5e9, sigma=0:13960120200241890800
n=37620L: c4289(2452285093......) = 247712870120571057763643900401 * c4259(9899708046......)
# ECM B1/B2=25e4/2e9, sigma=0:8693488626738065501
# 1307 of 300000 Φn(10) factorizations were finished. 300000 個中 1307 個の Φn(10) の素因数分解が終わりました。