n=849: c463(5705682439......) = 6665745840890644685531091049825511205035173717 * p417(8559705958......)
# ECM B1=3e6, sigma=3327356337
n=4858: c2069(5814858635......) = 3880271832350785813127370764867714215517 * c2030(1498569916......)
# ECM B1=6e6, sigma=3:2553502215
n=10300M: c2041(1010050200......) = 13189157147838102082482650675858339733901 * c2000(7658186110......)
# ECM B1=6e6, sigma=3:111371351
n=20024: c9996(7557703342......) = 82832803766514021925833504161 * c9967(9124046269......)
# ECM B1=1e6, sigma=104852919414352
n=33555: c17879(1141340054......) = 2764081801698243073951 * c17857(4129183348......)
# P-1 B1=300e6
n=100665: c53634(3308759622......) = 1592554594537771821133947534057751 * c53601(2077642822......)
# P-1 B1=300e6
# via yoyo@home
n=1800: c395(1432241739......) = 676486289910305243115743976857467256769005018068801 * c344(2117177777......)
# ECM B1=850000000, sigma=0:10291666828356324878
n=1737: c1131(1434166545......) = 374643318663224776797087808134396514017991 * c1089(3828085204......)
# ECM B1=11e6, sigma=3:3210609035
n=2835: c1250(1162916720......) = 382841290339047580948836872349134978125128631 * c1205(3037594820......)
# ECM B1=11e6, sigma=3:1589364952
n=10580M: c2025(1000000000......) = 6570298189028049671955767182606612734856972321 * c1979(1522000937......)
# ECM B1=6e6, sigma=3:3054475421
n=15027: c9973(7374306502......) = 4182598491090965431194483199 * x9946(1763092134......)
# P-1 B1=150e6
n=15027: x9946(1763092134......) = 25000864524514865340417957841201 * c9914(7052124669......)
# P-1 B1=150e6
n=15033: c9956(7516467424......) = 4748466597487224086119088443 * c9929(1582925197......)
# P-1 B1=250e6
n=15037: c13648(4267624014......) = 42806614765983366751426454005801 * c13616(9969543347......)
# P-1 B1=250e6
n=15041: c13715(1377776577......) = 63512551845982133110919 * c13692(2169298094......)
# P-1 B1=250e6
n=2900M: c541(2121330493......) = 6033033132690057373999077534888050305482001 * c498(3516192347......)
n=3940M: c780(1008547418......) = 51010270021344674871591579498841356967215001 * c736(1977145813......)
# via Kurt Beschorner
n=2258: c1114(4641147783......) = 52874014350801951051108908233818746760979 * c1073(8777748088......)
# ECM
n=8542: c4235(2207612955......) = 17931120838017673840027504869107406677 * c4198(1231162834......)
# ECM
n=9194: c4580(2042132469......) = 1667300272156337810113084656668394139 * c4544(1224813852......)
# ECM
n=10786: c5348(7793454050......) = 729914506072054827065390364470411767 * c5313(1067721491......)
# ECM
n=12226: c6020(1689809652......) = 2580548816983922435815679475699119371 * c5983(6548256872......)
# ECM
n=12434: c6212(1462242700......) = 10644871877697887832917616752925689 * c6178(1373659276......)
# ECM
n=1916: c899(1571178986......) = 10226546821709282341572622484214465901185349 * c856(1536372945......)
n=1398: c421(3733501901......) = 97829644721777630795842442531391034522052011 * c377(3816329816......)
# ECM B1=3e6, sigma=2651071350
n=1706: c844(1951636045......) = 273616243605203095321334459213437522758336721927 * c796(7132749209......)
# ECM B1=20e6, sigma=3:637627561
n=5584: c2715(7985835769......) = 33032585669354748100507532307619217 * c2681(2417563023......)
# ECM B1=1e6, sigma=0:8727546104645156
n=6217: c6195(1426666053......) = 91732344502157195313784261059592121 * c6160(1555248654......)
# ECM B1=1e6, sigma=5453357092045402
n=10036: c4589(1661018374......) = 35412413276700529015461294244357049 * c4554(4690497542......)
# ECM B1=1e6, sigma=8297072652981896
# via factordb.com
n=3238: c1551(1650720259......) = 88376853595525515029074288804105939891 * c1513(1867819674......)
n=3986: c1967(1110095215......) = 25555944415936379078066369218667934588173 * c1926(4343784748......)
# via Kurt Beschorner
n=1695: c846(3271171232......) = 3589492355981051731952052034695940490303247751 * c800(9113186234......)
# ECM B1/2=3e6/1e10, sigma=1:4277327597
n=2222: c938(2208722365......) = 2918644992157154213086063524625094205307903 * c895(7567629400......)
# ECM B1/2=3e6/1e10, sigma=1:2987761698
n=2262: c650(1400032384......) = 16087663360588803253849167238238929939 * c612(8702521635......)
# ECM B1/2=3e6/1e10, sigma=1:697874091
n=2590: c830(1138660404......) = 1587566981848255160768964580712527697515091 * c787(7172361336......)
# ECM B1/2=3e6/1e10, sigma=1:3594502645
n=3015: c1467(2535819604......) = 145561727061614082264058665770390854831 * c1429(1742092276......)
# ECM B1/2=2e6/1e10, sigma=0:9283897034382382548
n=3495: c1813(4749434783......) = 387453933028530938632676729870153370630391 * c1772(1225806316......)
# ECM B1/2=2e6/1e10, sigma=0:16005981700032064947
n=7740L: c943(6431629651......) = 36821525146880395030522367502885042322081 * c903(1746703762......)
# ECM B1/2=3e6/1e10, sigma=1:525306835
n=23220M: c2998(4457166297......) = 1753801360355145706859984612168517841 * p2962(2541431656......)
# ECM B1/2=2e6/1e10, sigma=0:5078811757710992863
$ ./pfgw64 -tc -q"((10^1161+1)*((10^2322+10^1161)*(10^1161+10^581+3)+10^581+2)-1)/393479005148507464343902335924102063323422304111075933686636668525699060382185781561669007081931020440654581463144851912827525752166401/((10^387+1)*((10^774+10^387)*(10^387+10^194+3)+10^194+2)-1)" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing ((10^1161+1)*((10^2322+10^1161)*(10^1161+10^581+3)+10^581+2)-1)/393479005148507464343902335924102063323422304111075933686636668525699060382185781561669007081931020440654581463144851912827525752166401/((10^387+1)*((10^774+10^387)*(10^387+10^194+3)+10^194+2)-1) [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 7 Running N+1 test using discriminant 13, base 8+sqrt(13) Calling N-1 BLS with factored part 0.25% and helper 0.15% (0.94% proof) ((10^1161+1)*((10^2322+10^1161)*(10^1161+10^581+3)+10^581+2)-1)/393479005148507464343902335924102063323422304111075933686636668525699060382185781561669007081931020440654581463144851912827525752166401/((10^387+1)*((10^774+10^387)*(10^387+10^194+3)+10^194+2)-1) is Fermat and Lucas PRP! (0.3297s+0.0111s)
n=1278: c398(4911851953......) = 158720442461371770292217981455847347981577942503 * c351(3094656162......)
# ECM B1=11e6, sigma=3746762614
n=1554: c389(1855820022......) = 116462699941346570110788260883522270500646769 * c345(1593488750......)
# ECM B1=11e6, sigma=1916824559
n=1734: c424(5771480751......) = 81377921661876815257762625738857311135506265389843731 * p371(7092194828......)
# ECM B1=11e6, sigma=1492419122
n=1784: c846(8012243918......) = 1506299242872513223456886300848222812688553 * c804(5319158166......)
# ECM B1=3e6, sigma=3:1325250992
n=8262: c2579(2544996603......) = 47834304614166196220391418206434330161 * c2541(5320442357......)
# ECM B1=1e6, sigma=0:582667912455680
n=9945: c4570(1671629783......) = 3771493051636833160947409738692384129946962271 * c4524(4432275919......)
# ECM B1=1e6, sigma=8483609740963473